ЦАРСТВО ГРИБЫ FUNGI

«Fungorum ordo chaos est»
C. Linnaeus

ГРИБЫ И ГРИБОПОДОБНЫЕ ОРГАНИЗМЫ

Грибы — эукариотические гетеротрофные организмы (не имеющие хлорофилла) с осмотрофным типом питания, размножаются спорами, их таллом представлен гифами, которые удлиняются путем верхушечного роста.

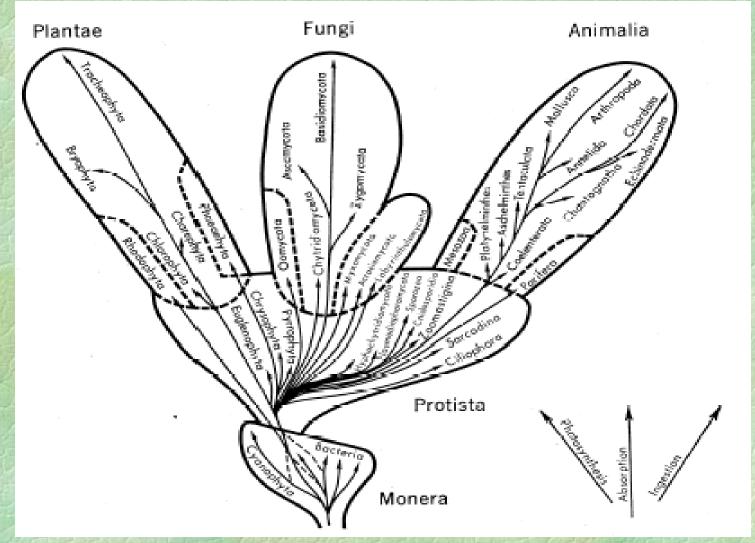
Гифы формируют «сеть» называемую мицелий.

Наука о грибах называется микология (от греческих слов *myces* – гриб и *logos* – наука)

Какое количество видов грибов существует?

По разным источникам грибов от 100 000 до 250 000 видов;

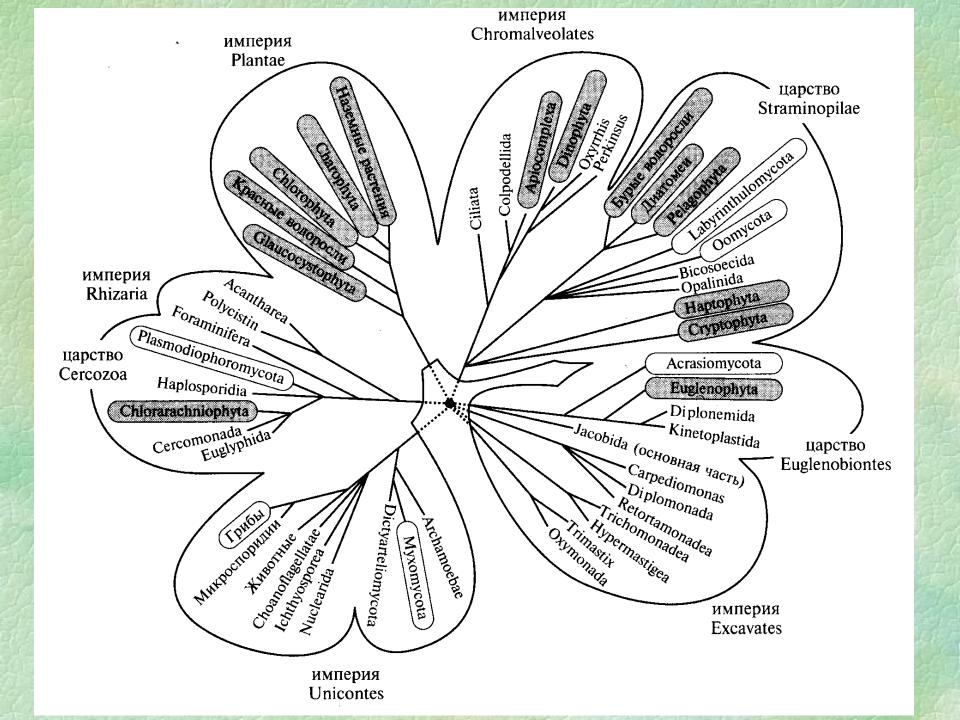
В настоящее время 80 000 видов описано и 1700 новых видов обнаруживают каждый год

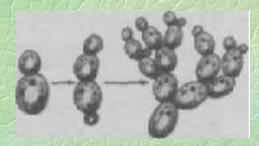


Признаки, сближающие грибы с растениями

- 1. Хорошо выраженная клеточная стенка
- 2. Неподвижность
- 3. Размножение спорами
- 4. Неограниченный рост
- 5. Поглощение пищи путем всасывания (осмос, различные виды транспорта)
- 6. Образуют вещества вторичного метаболизма

Признаки, сближающие грибы с животными


- 1. Гетеротрофный тип питания
- 2. Наличие хитина в клеточной стенке
- 3. Отсутствие фотосинтетических пигментов
- 4. Запасное вещество гликоген
- 5. Выделение мочевины как продукта азотистого обмена
- 6. Содержат пигмент меланин

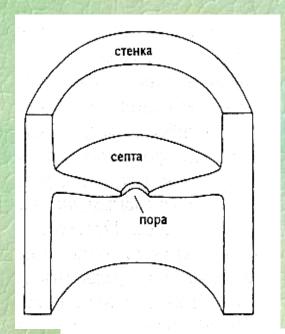


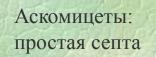
Пять царств

Monera (Procaryota) – отсутствие ядерной мембраны. Эукариоты: Protista – одноклеточные подвижные микроорганизмы с ядром и ядерной мембраной; пигментированные автотрофы или гетеротрофы. Многоклеточные: Plantae – растения - автотрофы. Animalia – гетеротрофы с фаготрофным питанием; Мусоta – гетеротрофы с абсорбционным типом питания.

R. H. Whittaker, 1969

Разнообразие грибов






Обитают грибы повсеместно, везде где может существовать жизнь.

Грибы очень разнообразны по величине, внешнему виду, месту обитания физиологическим особенностям.

- 1. Большинство грибов имеет многоклеточное тело мицелий, состоящий из гиф;
- 2. Мицелий у зигомицетов и грибоподобных организмов лишен перегородок и представляют собой как бы одну сильно разветвленную гигантскую многоядерную клетку (нечленистый, несептированный мицелий);
- 3. Центриоли у настоящих грибов отсутствуют (Овчарова, Елина).
- 4. Мицелий Ascomycota, Deuteromycota и Basidiomycota разделен поперечными перегородками (*септами*) на отдельные клетки, содержащие одно или несколько ядер (*членистый*, *септированный мицелий*);
- 5. Клетки грибов сходны с растительными; клеточная стенка состоит из *хитиновых волокон*;
- 6. Пластиды отсутствуют; имеются вакуоли;
- 7. Многие грибы образуют плодовые тела, представляющие собой тесно переплетенные гифы мицелия;

Базидиомицеты: сложная септа (долипоровая с перфорированной мембранной парентосомой)

Строение грибов

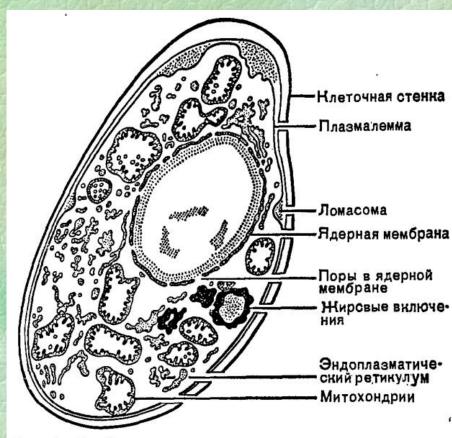
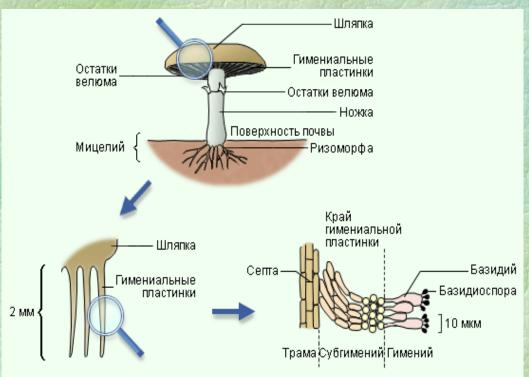
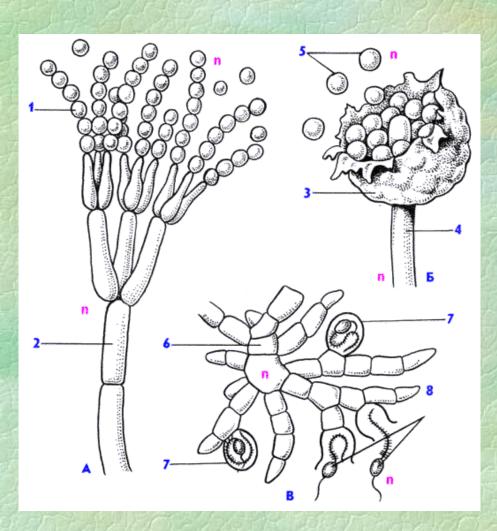



Рис. 1. Грибная клетка.

- В цитоплазме гиф располагаются обычные для эукариот органоиды: митохондрии, аппарат Гольджи, ЭПС, рибосомы, вакуоли
- Клеточная стенка грибов состоит из аморфного матрикса, который состоит из различных полисахаридов и белков. Может содержать меланин.
 - Как у бактерий вторичная клеточная стенка у грибов может откладываться снаружи от первичной. Между клеточной стенкой и плазмалеммой располагаются прарамуральные тельца (ломосомы) мембранные структуры, имеющие вид многочисленных пузырьков.

- Гифы могут плотно сплетаться, образуя ложную ткань *плектенхиму*, из которой состоят плодовые тела грибов.
- Так же гифы соединяясь, могут образовывать шнуровидные тяжи ризоморфы, достигающие нескольких метров. Гифы наружных слоев выполняют защитную функцию, они имеют более толстую клеточную стенку, содержащую пигмент, а внутренние гифы выполняют проводящую функцию.

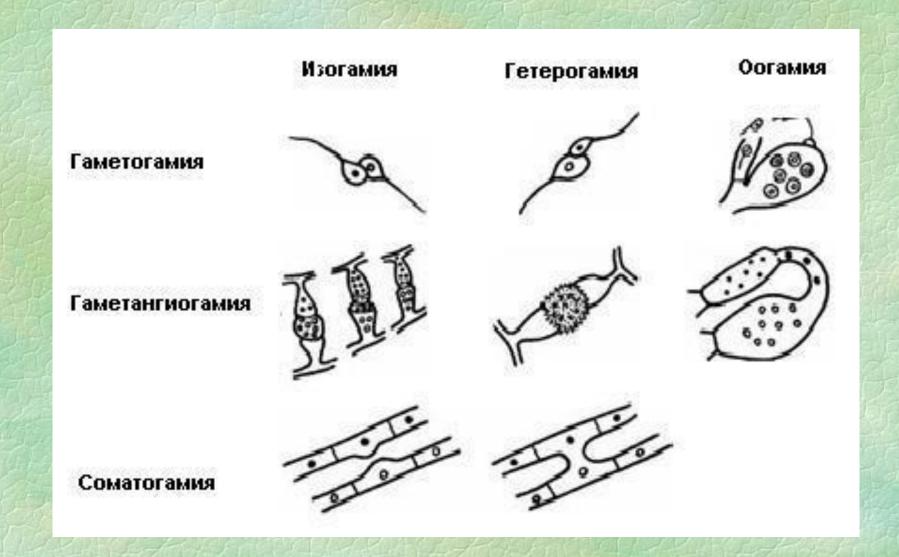

Размножение Бесполое:

- 1. Почкование
- 2. Фрагментация
- 3. С помощью экзогенных спор (конидий)
- 4. С помощью эндогенных спор

Половое

- 1. Изогамия
- 2. Гетерогамия
- 3. Оогамия
- 4. Зигогамия, слияние содержимого гаметангиев
- 5. Соматогамия, слияние содержимого двух вегетативных клеток

Спорообразование


• Споры образуются либо в спорангиях на специальных вертикально растущих веточках спорангиеносцах (мукор), либо экзогенно путем почкования. Такие экзогенно образующиеся споры называются конидиями.

В зависимости от строения клеточной стенки выделяют:

- *артроспоры* тонкостенные клетки
- **хламидоспоры** с толстой оболочкой, способны длительно переносить неблагоприятные условия.

- Для грибов характерно так называемое половое спороношение: споры, образуются из зиготы после полового процесса.
- Если половой процесс может происходить только между гифами разных мицелиев «+» и «-», то гриб называют гетероталличным. Если половой процесс возможен между гифами одного мицелия, то гриб называют гомоталличным.

Половое размножение

гаметогамия – слияниие гамет, образующихся в гаметангиях;

гаметангиогамия - слияние содержимого двух многоядерных специализированных половых органов (мужского и женского гаметангиев), которые не дифференцированы на гаметы; в качестве гамет здесь можно рассматривать свободно располагающиеся в гаметангиях ядра; характерен для зигомикотов и аскомикотов;

соматогамия - половых органов не образуется, а сливаются гаплоидные соматические клетки физиологически различных гиф; характерен для базидиомикотов;

хологамия (у грибов с одноклеточным мицелием) - наблюдается слияние двух особей.

ТИПЫ ПИТАНИЯ (способы извлечения энергии)

автотрофы

(способны к синтезу органических веществ из неорганических)

хемотрофы (используют для (используют для синтезов энергию химических

фототрофы

синтезов энергию солнца)

гетеротрофы

(питаются готовыми органическими веществами)

осмотрофы (всасывают органику (заглатывают из окружающей среды)

зоотрофы органические

субстраты)

Прокариоты

хемосинтезирующие бактерии и археи

реакций)

цианобактерии (синезеленые водоросли)

многие бактерии и археи

миксобактерии

Эукариоты

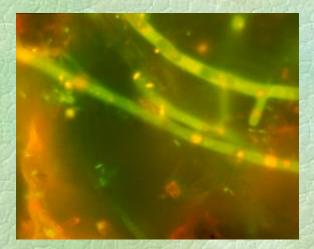
растения

грибы

животные

Питание грибов

- Грибы гетеротрофы, т.е. им необходим органический источник азота (аминокислоты), неорганические ионы K+, Mg2+, микроэлементы Fe, Zn, Cu, витамины.
- Различным грибам требуется строго определенный набор питательных веществ, поэтому различны субстраты, на которых можно эти грибы найти.
- Питание происходит путем всасывания растворенных веществ всей поверхностью тела.
- Грибы способны выделять в среду ферменты и осуществлять внешнее переваривание.
- По способу питания грибы подразделяются на: *сапротрофов, паразитов и симбионтов.*


Экологические группы грибов

Сапротрофы	Используют мертвое органическое вещество
- подстилочные и гумусовые	Используют для питания лесной опад, подстилку и гумусовый слой почвы
- ксилотрофы	Осуществляют разложение древесины
- капротрофы	Используют экскременты животных
- бриотрофы	Разлагают отмершие части мхов
- микотрофы	На отмерших плодовых телах грибов
Паразитические грибы	Биотрофы, паразитирующие на живых организмах
- фитопатогенные	Паразиты растений
- патогены животных	Паразиты животных
- микофильные	Паразиты других грибов
Микоризообразователи	Мутуалистические симбиотрофы, образующие симбиоз с растениями
Лишайники (лихенизированные грибы)	Мутуалистические симбиотрофы, образующие симбиоз с водорослями или цианобактериями – лишайники
Литобионтные	Развиваются в горных породах

Сапротрофы

- Если сапротрофы выделяют ферменты трех основных классов: *амилазы*, *липазы и протеазы*, то они могут использовать самые разные субстраты и являются вездесущими (*Mucor*, *Rhyzopus*, *Pinicillium*).
- являются редуцентами и играют важную роль в круговороте веществ в биоценозе. Особенно важную роль играют грибы, секретирующие *целлюлазу и лигназу*. Разрушение мертвых растительных остатков происходит главным образом за счет этих грибов.

Сапротрофные грибы

Гифы грибов в почве в люминисцентном микроскопе

Посев из почвы на среду Чапека

Плодовые тела на подстилке

Подстилочные и гумусовые сапротрофы

Ксилотрофы

Капротрофы

Микотрофы

Ксилотрофные грибы – разрушители древесины

Бурая гниль

Белая гниль

Зеленая окраска (Chlorosplenium)

Трутовые грибы (пор. Aphyllophorales)

Домовой гриб (Serpula lacrimans)

- 1. Деструкция древесных остатков
- 2. Регуляция продолжительности жизни деревьев
- 3. Разрушение деревянных построек

Средства защиты древесины

Грибы- паразиты

- Паразитические грибы в отличие от бактерий чаще всего поражают растения.
- Могут быть облигатными и факультативными.
- Облигатные паразиты, как правило не вызывают гибели своих хозяев. К ним относятся настоящие и ложные мучнисторосные, ржавчинные и головневые грибы.

Факультативные паразиты

Phytophtora

- продуцируют ферменты пектиназы, которые переваривая срединные пластинки вызывают мягкую гниль ткани, превращая ее в кашу.
- Затем с помощью *целлюлазы* они расщепляют клеточные стенки и внедряются в клетки, убивая их. Содержимое клетки также переваривается и всасывается. Примером может служить картофельный гиб фитофтора (*Phytophtora*)

Дрожжи Candida albicans.

- Это обычный компонент кишечной микрофлоры.
- Однако при нарушении состава микробиоценоза в результате применения антибиотиков и стероидных гормонов (подавляющих иммунную систему) дрожжи начинают усиленно размножаться, вызывая кандидомикозы.

Фитопатогенные грибы

Раневые паразиты (Nectria)

Спорынья

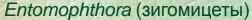
Мучнисторосяные грибы

Monilia

Фитопатология – одна из важнейших отраслей экологической и прикладной биологии

Ржавчинные грибы

Микопаразитические грибы



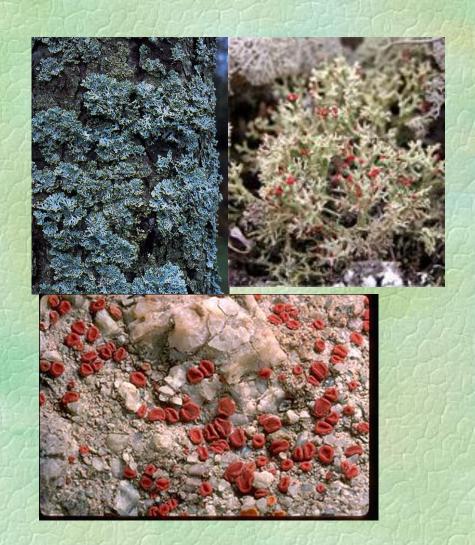
Микопаразитические грибы, растущие на плодовых телах агариковых грибов

Грибы – паразиты животных

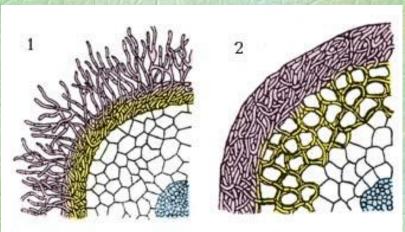
Энтомопатогенные грибы используются для производства биоинсектецидов

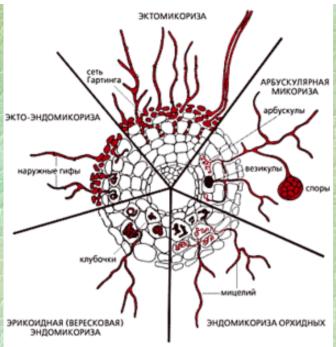
Хищные грибы

Хищные грибы (Arthrobotrys, Monacrosporium, Dactylaria, Caenorhabditis) могут жить как сапротрофы, но способны улавливать мелких червей (нематод) и питаться ими.


Образуют специальные структуры:

- ловчие сети
- клейкие выросты
- ловчие кольца




Грибы- симбионты

- Грибы симбионты участвуют в создании двух очень важных типов симбиотического союза лишайников и микоризы.
- Лишайники это ассоциация гриба и водоросли (зеленые и синезеленые). Считают, что водоросль снабжает гриб органическими продуктами фотосинтеза, а гриб поглощает из среды воду и минеральные соли.

Микориза

- *Микориза* представляет собой ассоциацию гриба и корней растения.
- Гриб поглощает минеральные соли и воду, снабжая ими дерево, а взамен получает органические продукты фотосинтеза.
- Если микоризный гриб обитает только на поверхности корней, то микориза называется эктоторофной
- Если гриб проникает внутрь тканей корня, то эндотрофной.

Вещества вторичного метаболизма.

Выделяют три группы веществ:

- *антибиотики* подавляют жизнедеятельность бактерий и других грибов
- микоспорины изменяют метаболизм стероидов
- микотоксины ядовитые вещества.
 Например, афлатоксины, вырабатываемые аспергиллом, поражают печень, оказывают канцерогенное, тератогенное, мутагенное действие, нарушают иммунитет.

Систематика грибов

Традиционно грибы делят на низшие и высшие.

Низшие грибы имеют нечленистый мицелий и не образуют плодовых тел. К ним относят отделы:

- Chytridiomycota
- Oomycota
- Zygomycota

К высшим грибам относят два отдела:

- Ascomycota
- Basidiomycota

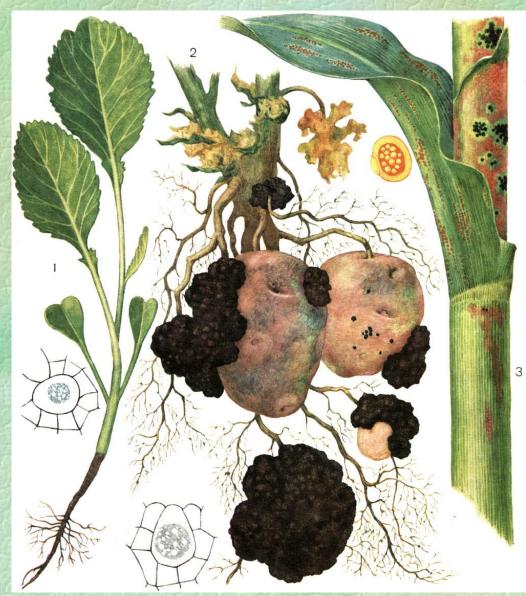
Выделяют также особую группу так называемых несовершенных грибов, у которых утрачено половое размножение.

Deuteromycota

Отдел Хитридиомикота

- Содержит около 100 родов и 1000 видов.
- По современной классификации относится к царству *Protoctista*.
- Половой процесс холо, изо, -гетеро и оогамия.
- Представители этого класса тесно связаны с водой.
 Большинство из них парзиты водорослей, водных грибов и беспозвоночных, есть наземные почвенные виды паразитирующие на высших растениях.
- В состав класса входит 6 порядков: хитридиевые (ольпидиум, синтрихиум)

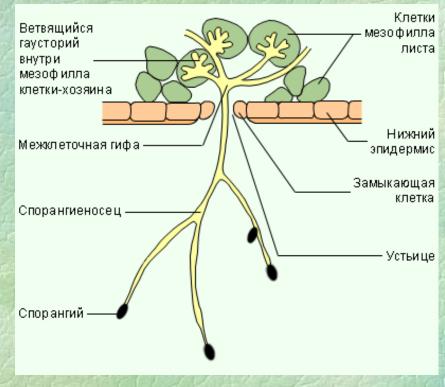
Olpidium brassicae


Ольпидиум капустный (Черная ножка)

Заражение растения происходит зооспорами, которые при наличии воды прилипают к поверхности стебелька капусты, утрачивают жгутики и переливают свое содержимое в клетку эпидермиса, затем в клетки первичной коры.

Synchytrium endobioticum

Синхитрий внутриживущий (рак картофеля)


На клубнях картофеля, пораженного раком, появляются бугристые опухоли, напоминающие губку. Они разрастаются, часто превышая размеры клубня, чернеют и затем разрушаются. Вегетативное тело (плазмодий) желтое или красноватое, редко бесцветное.

ОТДЕЛ OOMYCOTA (PSEUDOFUNGI)

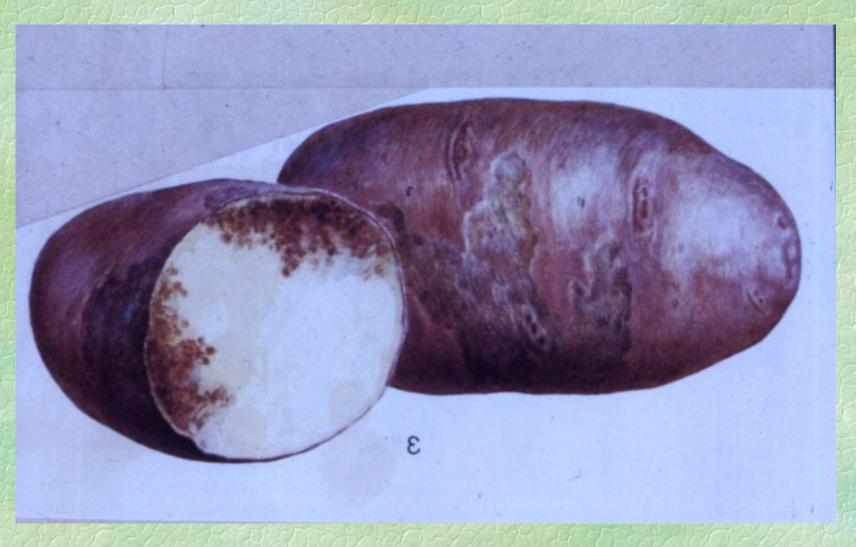
- Древняя примитивная группа.
- По современной классификации относится к царству Protoctista.
- Гифы нечленистые.
- В состав клеточной стенки входит целлюлоза.
- В качестве запасного питательного вещества откладывается крахмал.
- Большинство обитает в водной среде.
- Бесполое размножение зооспорами.
- Половой процесс оогамия (слияние яйцеклетки с ядрами антеридиев). Есть гомо и гетероталличные виды.
- По типу питания сапротрофы и паразиты.

Представители:

- Фитофтора *Phytophtora infestens*
 картофельный гриб. Поражает ботву и клубни картофеля, листья и плоды томатов и других пасленовых.
- Плазмопара *Plasmopara viticola*
 вызывает ложную мучнистую росу у винограда (милдью).
- Пероноспора Peronospora viticola— возбудитель желтофиоли капусты.
- Питиум *Pythium* вызывает вымокание проростков
- Saprolegnia officinalis cапротроф, поселяется на мертвых насекомых.

Семейство Phytophthoraceae.

Объединяет виды, развивающиеся сапротрофно на растительных остатках, а также некротрофных и гемибиотрофных паразитов растений, способных расти на искусственных средах. Формируют зооспорангии с неограниченным ростом.



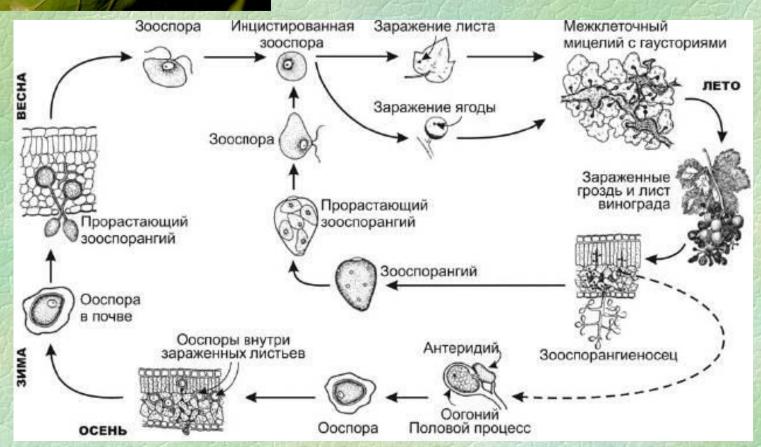
Фитофтора

Phytophtora infestens

– картофельный гриб.

Фитофтора *Phytophtora infestens* – картофельный гриб.

Фитофтора *Phytophtora infestens* – картофельный гриб.



Phytophthora cinnamomi на эвкалиптах в Австралии

Plasmopara viticola (ложная мучнистая роса винограда)

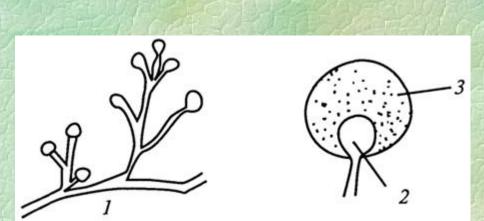
Пероноспора *Peronospora viticola*— возбудитель желтофиоли капусты.

Отдел Зигомикоты (Zygomycota)

Содержит более 500 видов, ведущих наземный образ жизни, среди которых есть и сапротрофы, и паразиты и включает два класса: Зигомицеты и трихомицеты. Представители этого отдела имеют хорошо развитый нечленистый мицелий.

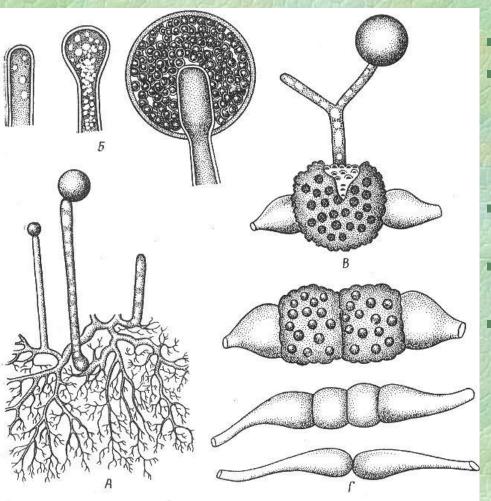
Бесполое размножение - неподвижными спорами. Половой процесс зигогамия.

Мукор, или головчатая плесень (*Mucor mucedo*) — сапротроф. Развивается на увлажненном хлебе, плодах, овощах, навозе в виде белой пушистой плесени. От мицелия приподнимаются вертикальные спорангиеносцы со спорангиями (вначале булавовидной, а затем шаровидной формы), внутри которых образуются споры. Споры разносятся по воздуху и в благоприятных условиях образуют новый мицелий.

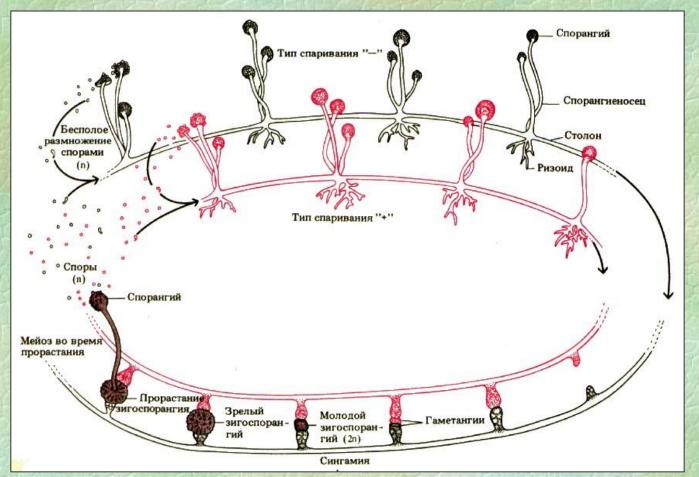


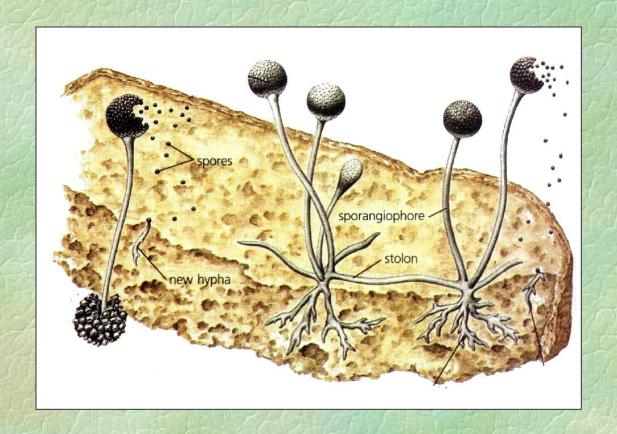
Ризопус *Rhizopus stolonifer* — обыкновенная хлебная плесень, растет на фруктах и овощах. Вызывает мягкую гниль в хранилищах.

Жизненный цикл. Бесполое размножение.


После 2-3 дней культивирования образуются вертикально растущие гифы — спорангиеносцы. Кончики споронгиеносцев набухают и превращаются в спорангии. Спорангий отделяется от спорангий отделяется от спорангиеносца выпуклой поперечной перегородкой, которая называется колонкой. Цитоплазма спорангия делится митозом и образуются споры.

Половое размножение.




- Зигомикоты гетероталличны,
- На гифах образуются многоядерные гаметангий, растущие по направлению друг к другу. Структура, соединяющая гаметангий с гифой называется подвесок.
- Затем гаметангии соединяются и наблюдается попарное слияние ядер.
- Образуется зигоспора, содержащая множество диплоидных ядер.
- Все ядра, кроме одного дегенерируют, а оставшееся подвергается мейозу. Из четырех образовавшихся гаплоидных ядер сохраняется лишь одно. Будет ли это «+» или «-» штамм дело случая.

Мукор (*Mucor mucedo*): A — мицелий со спорангиями; B — образование спорангия; B — прорастание зиготы; Γ — гаметангиогамия.

Жизненный цикл Мукора

- Зигоспора имеет толстую оболочку и запас питательных веществ. Она может длительно сохранять жизнеспособность.
- При попадании в благоприятные условия зигоспора прорастает, образуется спорангиеносец со спорангием, в котором путем митоза образуется множество спор (половое спороношение).

Мукоровые принимают участие в круговороте органических (особенно азотосодержащих) веществ почвы.

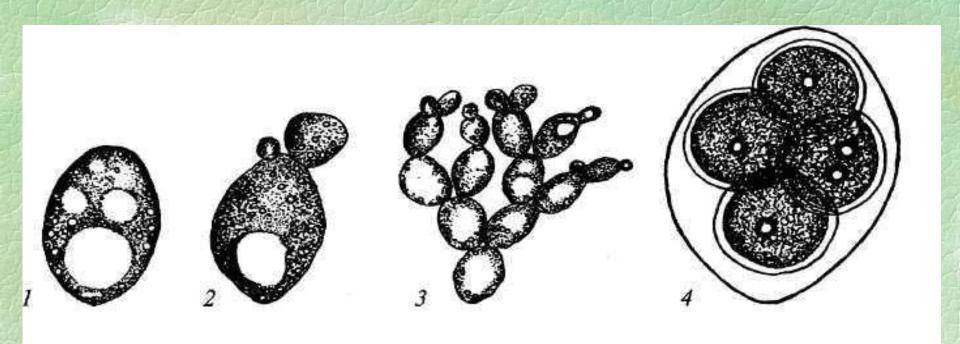
Нередко вызывают порчу продуктов.

Некоторые вызывают заболевание легких у птиц, поражают органы слуха и центральную нервную систему человека, вызывают дерматомикозы.

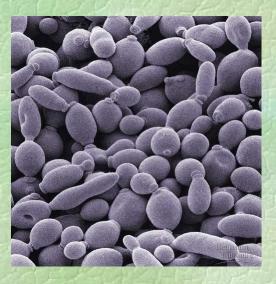
■ Отдел Аскомикоты, или сумчатые грибы (Ascomycota)

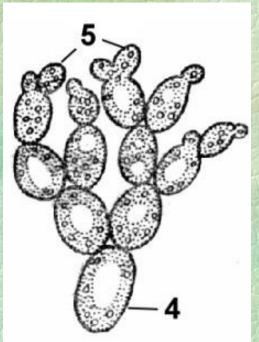
Включает более 30 тыс. видов. Среди них есть как сапротрофы, так и биотрофы (паразиты и симбионты); одноклеточные организмы (дрожжи) и виды с клеточным, хорошо развитым мицелием, образующим плодовые тела до 10-20 см (сморчки, строчки, трюфели).

Половой процесс гаметангиогамия


Размножаются сумчатые грибы спорами, которые образуются в асках (сумках).

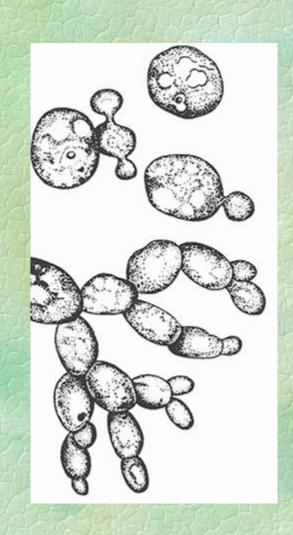
Отдел аскомикоты делится на две нруппы: голосумчатые, плодосумчатые.


Голосумчатые грибы (*Hemiascomycetes*). Сумки развиваются непосредственно на мицелии, плодовых тел нет.


Класс Сахаромицеты

Виды рода *Saccharomyces* (дрожжевые грибы) представляют собой одиночные, одноядерные, сферические или овальные клетки, которые размножаются вегетативно почкованием

Хлебные дрожжи (*Saccharomyces cerevisiae*): 1 – клетка дрожжей, 2 – начало почкования, 3 – почкование (образоваие псевдомицелия), 4 – сумка со спорами.



Вегетативное тело состоит из одиночных овальных клеток с одним ядром.

Дрожжи представлены большим числом видов, широко распространенных в природе. Только в культуре существуют пекарские дрожжи, представленные сотнями рас: винными, хлебопекарными, пивными. Винные встречаются в природе на поверхности плодов.

В качестве источника углерода они используют различные сахара, простые и многоатомные спирты, органические кислоты и другие вещества.

Способность сбраживать углеводы, расщепляя глюкозу с образованием этилового спирта и углекислого газа, послужила основой для введения дрожжей в культуру.

Размножаются почкованием. Почка возникает на одном конце клетки, начинает разрастаться и отделяется от материнской клетки. Часто дочерняя клетка не теряет связи с материнской и сама начинает образовывать почки. В результате образуются короткие цепочки клеток. Однако связь между ними непрочная, и при встряхивании такие цепочки распадаются на отдельные клетки.

При недостатке питания и избытке кислорода происходит половой процесс в форме хологамии — копуляция (слияние) двух гаплоидных клеток. Образовавшаяся зигота превращается в сумку, в которой путем мейоза образуются 4 аскоспоры, каждая из которых развивается в новые дрожжевые клетки.


Дрожжи используют в хлебопечении, пивоварении, виноделии. Дрожжи содержат до 50% белка, жиры, углеводы, в большом количестве синтезируют витамины (особенно B_2). Поэтому они обладают ценными пищевыми и кормовыми свойствами. Пивные дрожжи используются при лечении малокровия. Кормовые дрожжи используют для производства кормовых белков.

Представители:

Sacharomyces cerevisiae – пивные (хлебопекарные) дрожжи. Sacharomyces vini – винные дрожжи.

Плодосумчатые грибы (Carpoascomycetes).

У представителей этого класса сумки развиваются в специальных вместилищах — плодовых телах, различных по форме и величине.

Плодовые тела аскомикот

- Клейстотеций замкнутые округлые плодовые тела.
 Оболочка плодового тела называется перидий (эризифа).
- Перитеций грушевидные с узким отверстием на вершине.
 Сумки располагаются на дне (вентурия, спорынья).
- **Апотеций** блюдцевидные, чашевидные или в виде шляпки на ножке. Сумки располагаются открыто, и образуют слой **гимений** (сморчки, строчки)

Порядок Эризифовые

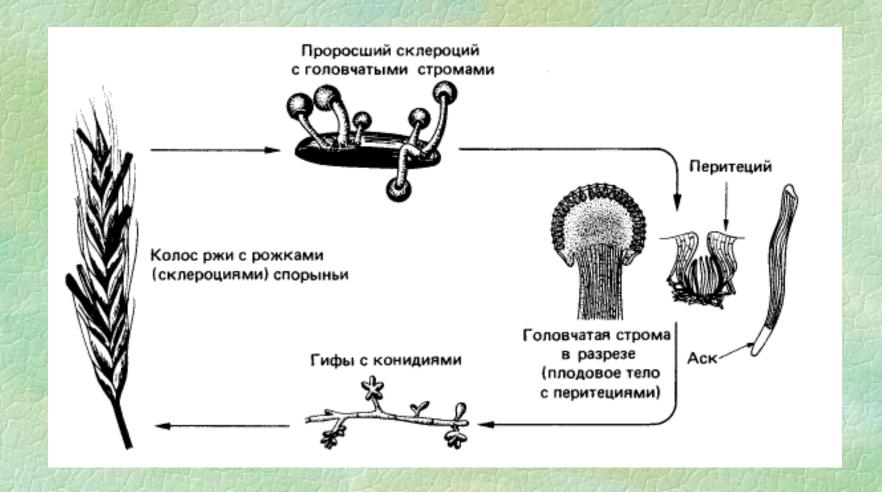
Erysiphales

- Плодовые тела клейстотеции.
- Сумки расположены пучком.
- семейство Настоящие мучнисторосые Erysiphaceae.
 Представители являются облигатными паразитами.
 Возбудители мучнистой росы у растений.
- Вид *Erysiphe graminis* паразитирует на диких и культурных злаках.
- Род сферотека *Spherotheca* поражает крыжовник, смородину, розы.
- Род унцинула *Uncinula* опасный паразит винограда

Группа порядков Пиреномицеты Pyrenomycetes.

Представитель данной группы - Спорынья (*Claviceps*) паразитирует на злаках (рожь), осоках. Имеет плодовое тело перитеций. В конце лета в колосьях ржи вместо зерновок образуются черно-фиолетовые рожки (склероции), которые состоят из плотного переплетения гиф.

После перезимовки в поле или зернохранилищах склероции прорастают. Из них вырастает 10-30 стром в виде шаровидных головок на ножках длиной 1,5-4 см.


По периферии головок расположены перитеции. В них находятся узкие цилиндрические сумки с 8 нитевидными аскоспорами.

Созревшие аскоспоры рассеиваются ветром и заражают растения.

Попадая на рыльца, аскоспоры прорастают, мицелий проникает в завязь и разрушает ее.

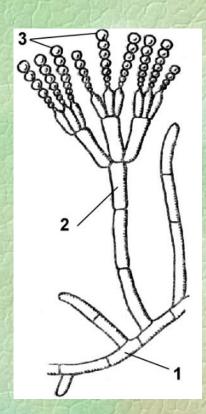
Через несколько дней образуются конидии, которые разносятся насекомыми и заражают другие растения.

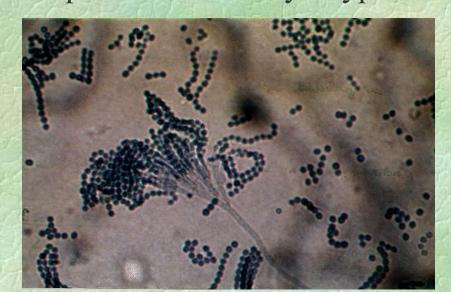
Мицелий гриба, начиная с нижней части завязи, постепенно плотно сплетается и образует к концу лета склероций.

Спорынья пурпурная

(Claviceps purpurea): колос ржи со склероциями, склероций, проросший головчатыми стромами.

Рожки (склероции) спорыньи эрготаминового (эрготоксинового) штамма (Cornua Secalis cornuti stamm Ergotamini (Ergotoxini)) вызывают сужение кровеносных сосудов и сокращение мышц. Отравление проявляется в виде судорог, головных и желудочных болей («злые корчи», эрготизм, антонов огонь) – эрготизм, иногда приводящее к смерти.


Отравление спорыньей


Более редко встречается гангренозная форма с прогрессивным омертвением пальцев, носа, грудей и других выступающих частей тела.

Спорынья издавна используется в медицине, особенно в акушерстве, как кровеостанавливающее средство.

Отдел Дейтеромикоты или несовершенные грибы

Виды таких родов, как пеницилл (Penicillium) и аспергилл (Aspergillus), служат источниками промышленного производства ряда антибиотиков, ферментов и органических кислот. В лечебную практику постоянно вводят все новые и новые, более эффективные синтетические производные, исходным сырьем для которых по-прежнему остается природный пенициллин, в больших количествах получаемый из промышленной культуры этого гриба.

Сапротрофные почвенные и плесневые грибы, поселяющиеся на хлебе, овощах и других продуктах.

Мицелий гаплоидный, септированный, ветвящийся. Сначала имеет вид белого паутинного налета, а затем приобретает зеленоватый или голубоватый оттенок. От мицелия вверх поднимаются конидиеносцы, концы которых образуют кисточку. На кончике каждого ответвления экзогенно образуется цепочка округлых спор — конидий. Они разносятся токами воздуха и дают начало новому мицелию.

Половое размножение происходит редко. При этом происходит слияние гаметангиев и образование плодовых тел, содержащих аски (сумки), в которых развиваются гаплоидные аскоспоры.

пеницилл

Рисунок 3.1.5.3. Пеницилл

Группа порядков Дискомицеты.

 Плодовые тела апотеции. Относятся сморчки и строчки.

Наиболее распространены два вида сморчков – сморчок съедобный (М. esculenta) и сморчок конический (М. conica). Обычно он встречаются в лесах на более или менее плодородной почве под лиственными деревьями.

Отдел Базидиомикоты, или базидиальные грибы (Basidiomycota)

Насчитывает около 30 тыс. видов. Представители этого отдела имеют многоклеточный (септированный) мицелий. Среди базидиомикот многочисленные сапротрофы и опасные паразиты высших растений. Значительное число видов — микоризообразователи (микориза — симбиотическая ассоциация гриба с корнями растений).

Название отдел получил от особых органов полового спороношения — *базидий*, на которых образуются *базидиоспоры*.

По типу развития и строению базидии базидиомикоты подразделяются на классы:

холобазидиомицеты (Holobasidiomycetes), фрагмобазидиомицеты (Phragmobasidiomycetes) Если при образовании базидиоспор делится и сама базидия, то такая базидия называется фрагмобазидией. Одноклеточная базидия называется холобазидией.

Класс Холобазидиомицеты объединяет группы порядков: гименомицеты и гастеромицеты. (Holobasidiomycetes). Это, в основном, сапрофиты. Базидии одноклеточные и вместе с бесплодными гифами образуют гимениальный слой. Последний развивается на гименофоре (плотная основа плодового тела из сплетенных гиф), который может быть трубчатым и пластинчатым. Трубчатый гименофор имеют представители семейств трутовиковые и болетовые, пластинчатый – грибы из семейств пластинниковые, мухоморовые.

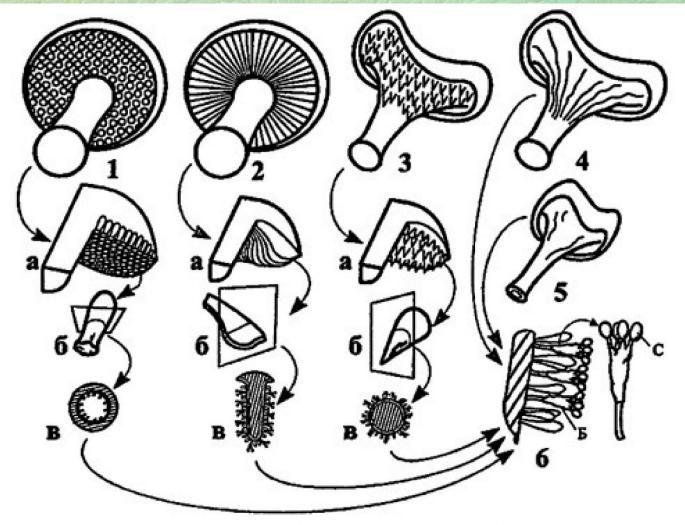



Рис. 4. Различные тилы гименофора:

1 — трубчатый гименофор (а — часть гриба, б — трубочка, в — поперечный разрез трубочки); 2 — пластинчатый гименофор (а — часть гриба, б — пластинка, в — поперечный разрез пластинки); 3 — шиповатый гименофор (а — часть гриба, б — отдельный шипик, в — поперечный разрез шипа); 4 — складчатый гименофор; 5 — гладкий гименофор; 6 — участок базидиального гименофора (б — базидия, с — споры).

Группа порядков Гименомицеты.

Самая крупная группа.
Образуют базидиоспоры на поверхности плодового тела - базидиокарпа.

Базидии образуют на поверхности базидиокарпов палисадный слой — *гимений*. Поверхность плодового тела

Поверхность плодового тела, несущая гимений, называется гименофор.

Гименофор может быть пластинчатым и трубчатым.

Порядок Афиллофоровые.

- Относится трутовик настоящий Fomes fomentarius
- Является опасным паразитом лесов, вызывает гниль древесины. Стерильная форма ложного трутовика *Inonotus obliquus* известна под названием «чага». Он образует на трещинах коры березы черные бугорчатые наросты. Вытяжку из чаги применяют в медицине при онкозаболеваниях.

Порядок Агариковые Agaricales.

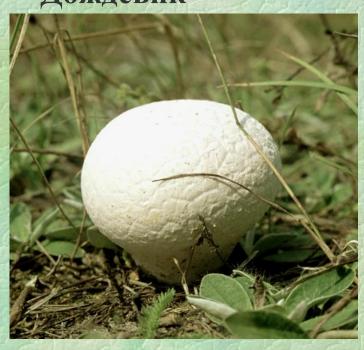
- Относится большинство шляпочных грибов (около 10 000 видов).
- Семейство Агариковые Agaricaceae почвенные сапротрофы
- Agaricus bisporus шампиньон двуспоровый

Семейство болетовые Boletaceae

- Boletus edulis
 белый гриб
- Leccinum aurantiacum подосиновик

L. scabrum - подберезовик Suillus - масленок

Семейство Мухоморовые Amanitaceae



- Amanita virosa
 мухомор вонючий
- Amanita phalloides –

Гастеромицеты.

• Дождевик

- Включает около 1000 видов.
- В основном почвенные сапротрофы.
- Базидиокарпы полностью замкнутые.

Класс Фрагмобазидиомицеты (Phragmobasidiomycetes).

Включает типичные грибы — паразиты, не имеющие плодовых тел. Базидии разделены перегородками на четыре клетки-членика. Наиболее важное значение имеют два подкласса: головневые (Ustilaginidae) и ржавчинные(Uredinidae).

- Головневые грибы *Ustilago* поражают цветки и семена злаков.
- Ржавчинные грибы около 5000 видов. Мицелий содержит масло оранжевого цвета. Пораженные растения покрываются подушечками оранжевого или красно- бурого цвета.
 Заболевание получило название ржавчины.

Отдел лишайники (Лихенизированные грибы – Phycomycota (Lichenes)

Лишайники представляют собой симбиотические организмы, в состав которых входят:

Микобионты – грибы (чаще аскомицеты, реже — базидиомицеты);

Фикобионты: водоросли (зеленые) или цианобактерии; иногда — азотофиксирующие бактерии.

Между симбионтами возникает тесная взаимосвязь, в результате чего формируется морфологически и физиологически целостный организм. Такое сосуществование гриба и водоросли является постоянным.

По характеру анатомического строения таллома лишайники делят на: гетеромерные и гомеомерные.

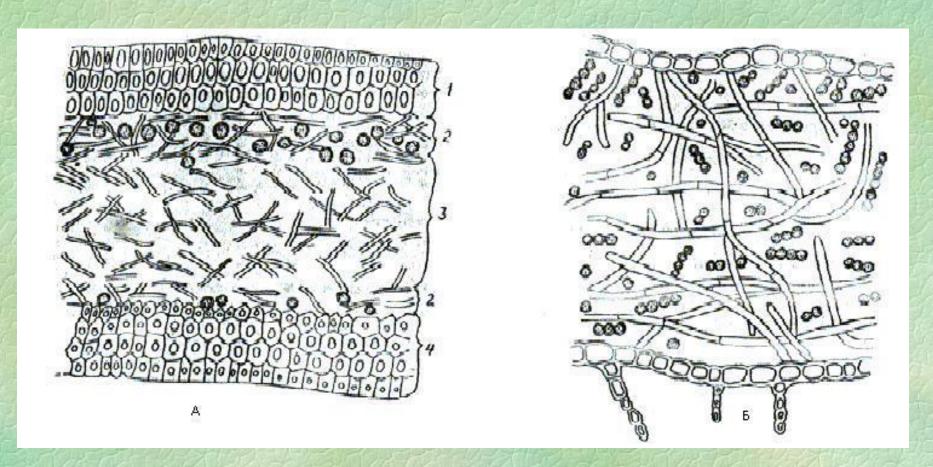
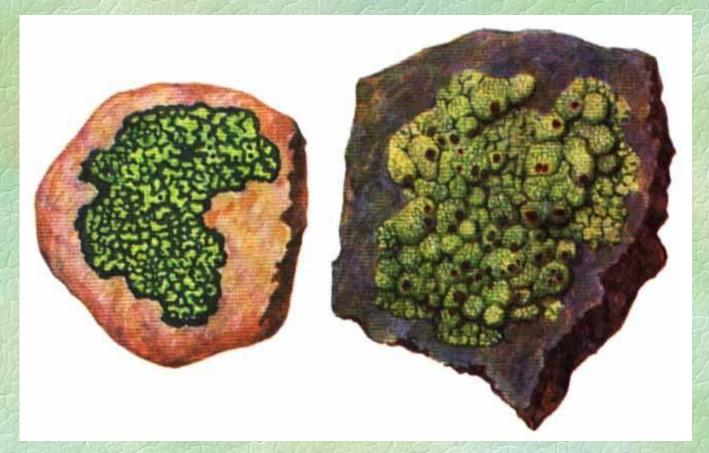



Рис. Строение талломов лишайников: А – гетеромерное строение: 1 – верхний коровой слой, 2 – гонидиальный (альгальный) слой, 3 – сердцевинный слой, 4 – нижний коровой слой; Б – гомеомерное строение.

По морфологии талломов различают три основные группы лишайников: накипные, листоватые и кустистые.

Накипные, или корковые — тело в виде корочек или накипи, связанное с субстратом всей поверхностью и практически неотделимое от него. К этой группе принадлежит до 80 % всех лишайников.

Листоватые – тело в виде листовидных пластинок, прикрепленных к субстрату пучками гиф и легко отделяющихся от него. У слоевища можно отличить верхнюю и нижнюю поверхности.

Кустистые — таллом в виде более или менее разветвленного кустика, поднимающегося с земли, или свисающего с ветвей

Рост лишайников происходит очень медленно. За год их таллом нарастает у разных видов от 1 до 10 мм. Продолжительность жизни таллома у отдельных видов может достигать 100 лет и более.

Лишайники первыми поселяются в самых бесплодных местах суши. Отмирая, образуют перегной, на котором могут жить другие растения. По отношению к субстрату и факторам окружающей среды лишайники подразделяют на ряд экологических групп: эпигейные - растут на почве, эпифитные — на живых растениях, эпиксильные - на обработанной или гниющей древесине, эпилитные — на камнях. Основное условие поселения лишайников - длительная неподвижность субстрата.

В лишайниках накапливаются полисахариды, а белков и жиров мало. Некоторые химические вещества лишайников обладают антимикробными свойствами. Кроме того, представители этого отдела используются для получения антибиотиков (кладония, пармелия, эверния и др.), ароматических веществ (некоторые лишайники синтезируют ценное эфирное масло) и фиксаторов запахов (лобария, эверния), а также красителей шерсти.

Лишайники чувствительны к загрязнению воздуха (погибают при высокой концентрации двуокиси серы и других загрязнителей), поэтому используются в качестве биоиндикаторов степени загрязнения окружающей среды.

- Размножение лишайников осуществляется половым и бесполым (вегетативным) способами. В результате полового процесса образуются споры гриба лишайника, которые развиваются в закрытых плодовых телах перитециях, имеющих узкое выводное отверстие вверху, или в апотециях, широко открытых к низу. Проросшие споры, встретив соответствующую своему виду водоросль, образуют с ней новое слоевище.
- Вегетативное размножение заключается в регенерации слоевища из небольших его участков (обломков, веточек). У многих лишайников есть специальные выросты изидии, которые легко отламываются и дают начало новому слоевищу. В других лишайниках образуются крошечные гранулы (соредии), в которых клетки водоросли окружены плотным скоплением гиф; эти гранулы легко разносятся ветром.

Выращивание лишайников

- Лишайники обнаружены даже в бесплодных арктических пустынях и внутри антарктических горных пород. Лишайники распространены по всему миру, но особенно разнообразны в тропиках, высокогорьях и в тундре.
- А вот в лабораториях лишайники достаточно быстро погибают. И только в 1980 году американские ученые сумели «соединить» водоросль и гриб, выращенный из споры.